metabelian, soluble, monomial, A-group
Aliases: C42⋊C9, (C4×C12).C3, (C2×C6).1A4, C3.(C42⋊C3), C22.(C3.A4), SmallGroup(144,3)
Series: Derived ►Chief ►Lower central ►Upper central
C42 — C42⋊C9 |
Generators and relations for C42⋊C9
G = < a,b,c | a4=b4=c9=1, ab=ba, cac-1=ab-1, cbc-1=a-1b2 >
Character table of C42⋊C9
class | 1 | 2 | 3A | 3B | 4A | 4B | 4C | 4D | 6A | 6B | 9A | 9B | 9C | 9D | 9E | 9F | 12A | 12B | 12C | 12D | 12E | 12F | 12G | 12H | |
size | 1 | 3 | 1 | 1 | 3 | 3 | 3 | 3 | 3 | 3 | 16 | 16 | 16 | 16 | 16 | 16 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 3 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 3 |
ρ4 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ9 | ζ95 | ζ92 | ζ97 | ζ94 | ζ98 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | linear of order 9 |
ρ5 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ98 | ζ94 | ζ97 | ζ92 | ζ95 | ζ9 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | linear of order 9 |
ρ6 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ92 | ζ9 | ζ94 | ζ95 | ζ98 | ζ97 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | linear of order 9 |
ρ7 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ94 | ζ92 | ζ98 | ζ9 | ζ97 | ζ95 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | linear of order 9 |
ρ8 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ95 | ζ97 | ζ9 | ζ98 | ζ92 | ζ94 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | linear of order 9 |
ρ9 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ97 | ζ98 | ζ95 | ζ94 | ζ9 | ζ92 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | linear of order 9 |
ρ10 | 3 | 3 | 3 | 3 | -1 | -1 | -1 | -1 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from A4 |
ρ11 | 3 | 3 | -3+3√-3/2 | -3-3√-3/2 | -1 | -1 | -1 | -1 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | ζ65 | ζ65 | ζ6 | ζ6 | ζ6 | ζ6 | ζ65 | ζ65 | complex lifted from C3.A4 |
ρ12 | 3 | 3 | -3-3√-3/2 | -3+3√-3/2 | -1 | -1 | -1 | -1 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | ζ6 | ζ6 | ζ65 | ζ65 | ζ65 | ζ65 | ζ6 | ζ6 | complex lifted from C3.A4 |
ρ13 | 3 | -1 | 3 | 3 | -1-2i | 1 | 1 | -1+2i | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | -1-2i | 1 | -1-2i | 1 | 1 | -1+2i | 1 | -1+2i | complex lifted from C42⋊C3 |
ρ14 | 3 | -1 | 3 | 3 | 1 | -1+2i | -1-2i | 1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | -1+2i | 1 | -1+2i | -1-2i | 1 | -1-2i | 1 | complex lifted from C42⋊C3 |
ρ15 | 3 | -1 | 3 | 3 | 1 | -1-2i | -1+2i | 1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | -1-2i | 1 | -1-2i | -1+2i | 1 | -1+2i | 1 | complex lifted from C42⋊C3 |
ρ16 | 3 | -1 | 3 | 3 | -1+2i | 1 | 1 | -1-2i | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | -1+2i | 1 | -1+2i | 1 | 1 | -1-2i | 1 | -1-2i | complex lifted from C42⋊C3 |
ρ17 | 3 | -1 | -3-3√-3/2 | -3+3√-3/2 | -1-2i | 1 | 1 | -1+2i | ζ6 | ζ65 | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ43ζ32-ζ32 | ζ32 | 2ζ43ζ3-ζ3 | ζ3 | ζ3 | 2ζ4ζ3-ζ3 | ζ32 | 2ζ4ζ32-ζ32 | complex faithful |
ρ18 | 3 | -1 | -3-3√-3/2 | -3+3√-3/2 | 1 | -1+2i | -1-2i | 1 | ζ6 | ζ65 | 0 | 0 | 0 | 0 | 0 | 0 | ζ32 | 2ζ4ζ32-ζ32 | ζ3 | 2ζ4ζ3-ζ3 | 2ζ43ζ3-ζ3 | ζ3 | 2ζ43ζ32-ζ32 | ζ32 | complex faithful |
ρ19 | 3 | -1 | -3+3√-3/2 | -3-3√-3/2 | 1 | -1-2i | -1+2i | 1 | ζ65 | ζ6 | 0 | 0 | 0 | 0 | 0 | 0 | ζ3 | 2ζ43ζ3-ζ3 | ζ32 | 2ζ43ζ32-ζ32 | 2ζ4ζ32-ζ32 | ζ32 | 2ζ4ζ3-ζ3 | ζ3 | complex faithful |
ρ20 | 3 | -1 | -3+3√-3/2 | -3-3√-3/2 | -1-2i | 1 | 1 | -1+2i | ζ65 | ζ6 | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ43ζ3-ζ3 | ζ3 | 2ζ43ζ32-ζ32 | ζ32 | ζ32 | 2ζ4ζ32-ζ32 | ζ3 | 2ζ4ζ3-ζ3 | complex faithful |
ρ21 | 3 | -1 | -3-3√-3/2 | -3+3√-3/2 | 1 | -1-2i | -1+2i | 1 | ζ6 | ζ65 | 0 | 0 | 0 | 0 | 0 | 0 | ζ32 | 2ζ43ζ32-ζ32 | ζ3 | 2ζ43ζ3-ζ3 | 2ζ4ζ3-ζ3 | ζ3 | 2ζ4ζ32-ζ32 | ζ32 | complex faithful |
ρ22 | 3 | -1 | -3+3√-3/2 | -3-3√-3/2 | -1+2i | 1 | 1 | -1-2i | ζ65 | ζ6 | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ4ζ3-ζ3 | ζ3 | 2ζ4ζ32-ζ32 | ζ32 | ζ32 | 2ζ43ζ32-ζ32 | ζ3 | 2ζ43ζ3-ζ3 | complex faithful |
ρ23 | 3 | -1 | -3+3√-3/2 | -3-3√-3/2 | 1 | -1+2i | -1-2i | 1 | ζ65 | ζ6 | 0 | 0 | 0 | 0 | 0 | 0 | ζ3 | 2ζ4ζ3-ζ3 | ζ32 | 2ζ4ζ32-ζ32 | 2ζ43ζ32-ζ32 | ζ32 | 2ζ43ζ3-ζ3 | ζ3 | complex faithful |
ρ24 | 3 | -1 | -3-3√-3/2 | -3+3√-3/2 | -1+2i | 1 | 1 | -1-2i | ζ6 | ζ65 | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ4ζ32-ζ32 | ζ32 | 2ζ4ζ3-ζ3 | ζ3 | ζ3 | 2ζ43ζ3-ζ3 | ζ32 | 2ζ43ζ32-ζ32 | complex faithful |
(2 24 18 33)(3 34 10 25)(5 27 12 36)(6 28 13 19)(8 21 15 30)(9 31 16 22)
(1 32 17 23)(2 18)(3 34 10 25)(4 35 11 26)(5 12)(6 28 13 19)(7 29 14 20)(8 15)(9 31 16 22)(21 30)(24 33)(27 36)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)
G:=sub<Sym(36)| (2,24,18,33)(3,34,10,25)(5,27,12,36)(6,28,13,19)(8,21,15,30)(9,31,16,22), (1,32,17,23)(2,18)(3,34,10,25)(4,35,11,26)(5,12)(6,28,13,19)(7,29,14,20)(8,15)(9,31,16,22)(21,30)(24,33)(27,36), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)>;
G:=Group( (2,24,18,33)(3,34,10,25)(5,27,12,36)(6,28,13,19)(8,21,15,30)(9,31,16,22), (1,32,17,23)(2,18)(3,34,10,25)(4,35,11,26)(5,12)(6,28,13,19)(7,29,14,20)(8,15)(9,31,16,22)(21,30)(24,33)(27,36), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36) );
G=PermutationGroup([[(2,24,18,33),(3,34,10,25),(5,27,12,36),(6,28,13,19),(8,21,15,30),(9,31,16,22)], [(1,32,17,23),(2,18),(3,34,10,25),(4,35,11,26),(5,12),(6,28,13,19),(7,29,14,20),(8,15),(9,31,16,22),(21,30),(24,33),(27,36)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36)]])
C42⋊C9 is a maximal subgroup of
C42⋊D9 C42⋊C18 C42⋊2C18 C9×C42⋊C3 C42⋊3- 1+2 C122.C3
C42⋊C9 is a maximal quotient of C2.(C42⋊C9) C42⋊C27
Matrix representation of C42⋊C9 ►in GL3(𝔽13) generated by
5 | 0 | 0 |
0 | 1 | 0 |
0 | 0 | 8 |
5 | 0 | 0 |
0 | 5 | 0 |
0 | 0 | 12 |
0 | 0 | 9 |
1 | 0 | 0 |
0 | 1 | 0 |
G:=sub<GL(3,GF(13))| [5,0,0,0,1,0,0,0,8],[5,0,0,0,5,0,0,0,12],[0,1,0,0,0,1,9,0,0] >;
C42⋊C9 in GAP, Magma, Sage, TeX
C_4^2\rtimes C_9
% in TeX
G:=Group("C4^2:C9");
// GroupNames label
G:=SmallGroup(144,3);
// by ID
G=gap.SmallGroup(144,3);
# by ID
G:=PCGroup([6,-3,-3,-2,2,-2,2,18,326,230,2379,69,2164,3893]);
// Polycyclic
G:=Group<a,b,c|a^4=b^4=c^9=1,a*b=b*a,c*a*c^-1=a*b^-1,c*b*c^-1=a^-1*b^2>;
// generators/relations
Export
Subgroup lattice of C42⋊C9 in TeX
Character table of C42⋊C9 in TeX